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Low-order aberration sensitivity of an optical
vortex coronagraph
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We describe a high-contrast imaging technique capable of directly measuring light from a terrestrial planet
by using a vortex mask of topological charge m=5. We demonstrate that this technique is relatively insen-
sitive to low-order aberrations and compare its performance to that of a band-limited Lyot coronagraph.
© 2006 Optical Society of America
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The imaging of exosolar planets is one of the top pri-
orities in astronomy. However, searching for exosolar
terrestrial planets in visible light presents a daunt-
ing task, requiring the stellar light to be reduced by a
factor of 10−10! Several starlight suppression devices,
such as stellar coronagraphs, have been investigated
to achieve this high level of contrast.1–4 Stellar coro-
nagraphs employ an image-plane occulting mask to
preferentially obstruct starlight, enhancing the con-
trast between the star and nearby objects (e.g., plan-
ets). There are two basic types of image-plane occult-
ing masks: amplitude masks and phase masks.
Ideally, an amplitude mask attenuates the on-axis
starlight in the image plane without significantly at-
tenuating the light from an off-axis source. Band-
limited masks are a special type of amplitude mask
with a frequency domain representation that is non-
zero only for a finite band of spatial frequencies.5

Trauger et al.6 used a band-limited mask to demon-
strate the deepest light suppression to date ��10−9�.
It is also possible to attenuate starlight with a phase
mask, which reduces starlight by phase shifting two
or more regions of the stellar wave front by � rad,
thus creating an interference null in the stellar in-
tensity profile.7

In this Letter we examine the performance of a
new type of high-contrast coronagraph, known as an
optical vortex coronagraph8 (OVC). An optical vortex
may be characterized as a dark core of destructive in-
terference produced by a helical phase defect in a
beam of spatially coherent light. A scalar beam of
light with a centrally embedded optical vortex may
be described in cylindrical coordinates �� ,� ,z� by the
field9

E��,�,z,t� = A��,z�exp�im��exp�i�t − ikz�, �1�

where A�� ,z� is a circularly symmetric amplitude
function, �=2�c /� is the angular frequency of a
monochromatic field of wavelength �, k=2� /� is the
wavenumber of the field, and m is the topological
charge. The light beam described by Eq. (1) is said to
possess vorticity because at any fixed instant of time
helical surfaces given by m�−kz=constant are pro-
duced for integer values of m. In addition, the ampli-

tude vanishes along the helix axis ��=0� forming a
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dark central core that persists for all values of z, i.e.,
A�0,z�=0.

A monochromatic, planar �m=0� beam may be con-
verted into a vortex beam by transmitting the light
through a transparent diffractive phase mask.10

Light passing through the mask gains an azimuth-
ally varying phase pattern and an amplitude profile
containing an embedded dark core, which may be
used to attenuate a coherent beam of light.11 After at-
tenuation, a mutually incoherent background signal
may be detected,12 which is the basis of an OVC.

A simple OVC architecture is depicted in Fig. 1.
Light from an unresolved star is imaged by L1, which
represents the telescope optics. A vortex mask (OVM)
is placed near the focus of L1, creating a dark central
null in the beam. Lens L2 then collimates the beam,
which subsequently passes through a Lyot stop. The
Lyot stop blocks the unwanted, on-axis starlight, and
the remaining light is reimaged by L3, allowing the
detection of nearby faint objects (e.g., planets).

In an actual coronagraph system the optical sur-
faces are slightly distorted, creating aberrations that
deform the vortex core. This allows light to leak past
the Lyot stop, reducing the performance of the coro-
nagraph (i.e., starlight attenuation). One perfor-
mance evaluation criterion is the contrast sensitivity
of the coronagraph to low-order wavefront
aberrations.13 Contrast may be defined as the ratio of

Fig. 1. Simple unfolded model of an optical vortex corona-
graph. Lens �L1� represents the telescope optics, which fo-
cus the light from the entrance pupil onto an m=5 optical
vortex mask (OVM). The inset depicts the OVM phase pro-
file. Lens �L2� collimates the light forming an exit pupil
where we place a Lyot stop. A third lens �L3� reimages the

light to the final focal plane at (FP).

2006 Optical Society of America



2982 OPTICS LETTERS / Vol. 31, No. 20 / October 15, 2006
the intensity in the final image plane when the oc-
culter is in place to the intensity when the occulter is
removed. As a way of further simplifying the com-
parison of different coronagraphs, Green and
Shaklan13 evaluated the average contrast over a ring
located at �0=4�f /D, where D is the diameter of the
entrance pupil and f is the focal length of the imaging
lens (L1 in Fig. 1). The average contrast evaluated at
�=�0 is given by14

C̄�0
= �1/AR��

0

2�

I��0,��/�Iopen��0,���o��0,���2�d�,

�2�

where AR is the integration area of the ring located at
�0 , I��0 ,�� is the intensity in the final image plane
(FP in Fig. 1) when the mask is in place, Iopen��0 ,�� is
the intensity in the final image plane when the mask
is removed, and o�� ,�� is the occulting mask trans-
mission function. The contrast sensitivity of a corona-
graph may be obtained by fitting the curve of C̄�0

ver-
sus aberration size to a power law given by C̄�0
=�+��	, where � is the contrast of the unaberrated
system, � is a scaling factor determined from the
least-squares fit, � is the size of the aberration, and 	
is the order of the contrast sensitivity. In an ideal
coronagraph, the occulting mask filters out aberra-
tions that have a power-law dependence less than 	.
In theory, the linear sinc2 mask used by Trauger et
al.6 possessed a fourth-order contrast sensitivity, and
amplitude masks exhibiting an eighth-order contrast
sensitivity are under investigation.16,17 As we will
show, an OVC theoretically has a 2mth-order con-
trast sensitivity, implying that a vortex mask of
charge m
4 will have lower contrast sensitivity
than the previously mentioned amplitude masks.

By using a simple analytic model based on the ar-
chitecture depicted in Fig. 1, it is possible to derive
the approximate contrast sensitivity of an OVC. We
assume the entrance pupil has a uniform amplitude
transmission function, P�r�, and a phase transmis-
sion function ��r ,��
1, where �r ,�� denote the pupil
plane coordinates. Therefore, the complex field at the
entrance pupil may be approximated as

E�r,�� = P�r��1 + 	
l=1,2,3 . . .

il

l!
��r,��
 . �3�

In this case, P�r�=1 inside the pupil, and P�r�=0 out-
side of the pupil. If a vortex mask is placed near the
focus of L1 (see Fig. 1), the focal plane field is given
by E�� ,��=FT�E�r ,���M���exp�im��, where �� ,�� de-
notes the image plane coordinates, FT�E�r ,��� is the
two-dimensional Fourier transform of E�r ,��, and
M��� is the amplitude transmission function of the
vortex mask. The beam is then collimated by lens L2
(see Fig. 1), and the reimaged pupil, Pexit�r ,��, may
be represented by the convolution of E�r ,�� with
FT�M���exp�im���. The vortex mask amplitude

15
transmission function may be approximated as
M��� = tanhm��/wv�, �4�

where wv is the vortex core waist size. By expanding
Eq. (4) in a Taylor’s series about �=0, M��� is given
by

M��� � 	
k=1,2,3 . . .

ak�k, ak = �1/wvk!�� �k

��kM�� = 0�
 .

�5�

The derivatives in relation (5) are zero for k�m, im-
plying that k=m is the first nonzero term. By utiliz-
ing relation (5) and converting FT�M���exp�im���
into a Hankel transform, Pexit�r ,�� may be repre-
sented as

Pexit�r,�� = E�r,�� 	
k=m,m+1,m+2 . . .

akHm��k�exp�im��,

�6�

where Hm�f���� represents the mth-order Hankel
transform of f���. Substituting Eq. (3) into Eq. (6) and
evaluating the Hankel transform18 yields

Pexit�r,�� = P�r��1 + 	
l=1,2,3 . . .

il

l!
�l�r,��


� 	
k=m,m+1,m+2 . . .

ak�− 1

2�

k

rm−k
dk

drk

�� 1

rm−k��r�
exp�im��. �7�

The coronagraph leakage due to the first term in the
expansion of the phase aberration [k=m, l=1 in Eq.
(7)] is proportional to the mth derivative of the phase
aberration. Therefore all phase aberrations with a ra-
dial dependence of less than m will not contribute to
the coronagraph leakage, and an OVC will exhibit an
mth-order sensitivity in amplitude. Since contrast is
proportional to intensity, we predict that an OVC will
possess a 2mth-order contrast sensitivity.

To verify this prediction, we simulated the perfor-
mance of an OVC with an entrance pupil diameter of
D=1000 pixels, a Lyot stop diameter of DL=0.52D,
and an m=5 vortex mask designed for �0=550 nm
with wv=0.014D. An m=5 vortex mask was chosen to
maximize the order of the sensitivity while still ad-
hering to current manufacturing limitations (single
spiral masks of charge m�6 are not currently pos-
sible). In addition, the value of wv was chosen to best
simulate the nonideal amplitude transmission of a
slightly defocused vortex mask but was small enough
not to affect the average contrast at �=�0. Further-
more, we assumed that the focal plane profile inci-
dent on the vortex mask was an ideal Airy profile.18

The performance of an OVC was measured by ap-
plying small wavefront perturbations, represented by
the first 12 Noll ordered Zernike polynomials,19 to the
entrance pupil of the system (located at L1 in Fig. 1).
The resulting average contrast at �=�0 was then
computed using Eq. (2) and plotted versus the peak-

to-valley aberration size (see Fig. 2). The contrast
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sensitivity of an OVC was determined by fitting each
plot to a power law by the method of least squares.
The values of the fitted power-law exponent, 	, as
well as the simulated 	 values obtained by Shaklan
and Green for a linear eighth-order mask,17 are listed
in Table 1. The m=5 OVC demonstrated ninth-order
contrast sensitivity to tip–tilt (z=2, z=3) but did not
yield the predicted tenth-order sensitivity. This de-
parture from the theoretical model is due to higher-
order terms �l
1� in Eq. (7). Even with this depar-
ture from the predicted sensitivity, the m=5 OVC
demonstrated a lower contrast sensitivity than a lin-
ear eighth-order mask. It should also be noted that
the OVC throughput for a planet, located at an angu-
lar position of 4� /D away from its parent star, was
approximately equal to the throughput reported by
Shaklan and Green16 for the optimized linear eighth-
order coronagraph. However, since we obtain high
contrast with the OVC, a larger Lyot stop could be
used, increasing the planet light throughput.

Table 1. Comparison of Aberration Sensitivities
to za

z

2 3 4 5 6 7 8 9 10 11 12

Eighth-order mask 8 8 4 4 4 4 4 4 4 2 2
m=5 OVC 9 9 — 6 6 4 4 5 5 5 5

aA linear eighth-order mask is compared with an m=5 vortex
coronagraph �OVC�; z is the Noll ordered Zernike polynomial. For
the OVC there is no value for z=4 because no accurate estimate
could be obtained from the irregular plot �Fig. 2�.

Fig. 2. Plots of contrast versus aberration size (waves
peak to valley) depicting the aberration sensitivity of an
m=5 vortex coronagraph to various Noll ordered Zernike
polynomials �z�. This is evaluated as the average contrast
at a 4� /D annulus around a star.
In this Letter we addressed the optimization of the
low-order aberration sensitivity of an OVC. An OVC
may hold several key advantages for terrestrial
planet detection. Low aberration sensitivity, high
planet light throughput, and potential broadband
operation20 are just a few of the key advantages.
Other uses of a high-contrast OVC might include sen-
sor protection, characterization of exozodiacal dust,
enhanced resolution of binary star systems, and im-
proved edge detection in optical coherence tomogra-
phy. Future work will address the optimization of
other performance criterion such as the inner work-
ing angle and planet light throughput.
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